

Preliminary investigations of zirconium behaviour with extraction chromatography and other media

Peter Ivanov, Simon Jerome, Ben Russell

National Physical Laboratory, UK

28th October 2014 – EiChrom User Workshop: RRMC 2014, Tennessee

Introduction

- Zirconium as an element
- Production of ⁸⁸Zr and ⁸⁹Zr
- Planned standardisation of ⁹³Zr
- Recovery and purification of ⁹⁵Zr from fission product mixtures

(This work was carried out by Peter Ivanov and Ben Russell)

Zirconium

Zirconium mass distribution

Zirconium-88 and -89

Used medically

Absorption of Zr on anion resin:

Load solution: 12M HCI Elution: 6M HCI
 Load solution: 3M HF Elution: 1M HNO₃

Ivanov, P.I et al, 'Cyclotron production and radiochemical purification of ^{88,89}Zr via α-particle induced reactions on natural strontium', Applied Radiation and Isotopes, <u>90</u>, (2014), 261-264

Zirconium-93

- Standardisation of ⁹³Zr
 - High yield (>6%), long lived (t_{1/2}: 1.6×10⁶ y) fission product
 - Also activation product from irradiation of zircaloy in fuel
 - Dominant nuclide 0.5-5 million years
- Relatively pure
 - Need to separate from residual fission products
 - Have to separate from ^{93m}Nb daughter

What else do we say here?

Recovery and purification of ⁹⁵Zr NP from fission products

 Recovered as useful radionuclide from irradiated uranium targets

ICP-MS response to Y, Zr and Nb

Zr separation

U-TEVA

- Yttrium weakly adsorbed in 9M HCI
- Zirconium strongly adsorbed in 9M HCl
- Niobium strongly adsorbed in 9M HCI
- Zirconium weakly adsorbed in 9M HNO₃
- Niobium weakly adsorbed in 9M HNO₃

Therefore

- Load in strong HCl to remove lanthanides
- Recover with strong nitric acid

Zr separation

TEVA

- Zirconium strongly adsorbed in 12M HCl
- Niobium strongly adsorbed in 12M HCI
- Zirconium weakly adsorbed in 10M HCI/1M NH₄F
- Niobium strongly adsorbed in 10M HCI/1M NH₄F

Therefore

- Load in strong HCl to adsorb zirconium and niobium
- Recover zirconium with 10M HCI/1M NH₄F

Zr separation next steps

- Fission products
 - Behavior of antimony and other fission products on U-TEVA and TEVA

Optimisation

- Specific isolation of zirconium
- Use of stacked columns
- Try and avoid use of HF

Conclusions

- Separation and purification of zirconium
 - Work so far suitable for:
 Separating ⁸⁹Zr from Y₂O₃ target
 Purifying ⁹³Zr sample main issue: removal of ^{93m}Nb and ¹⁵²Eu
 - Extend to spectrum of fission products

Future

- Test removal of niobium with 92mNb/tantalum
- Stacked columns

National Measurement System

The National Measurement System delivers world-class measurement science & technology through these organisations

The National Measurement System is the UK's national infrastructure of measurement laboratories, which deliver world-class measurement science and technology through four National Measurement Institutes (NMIs): LGC, NPL, the National Physical laboratory, TUV NEL the former National Engineering Laboratory, and the National Measurement Office (NMO).