METHOD ADAPTATION FOR THE ANALYSIS OF SAMPLE MATRICES ENCOUNTERED DURING THE EVALUATION OF POTENTIALLY CONTAMINATED SITES IN AUSTRIA

Eva Maria Lindner
Department for Radiation Protection and Radiochemistry

Presentation
RRMC, Iowa City, 10/29/2015
History of uranium ore in Europe

• Discovery of radioactivity → uranium ore/pitchblende
• Austria: Joachimsthal mine

• Marie Sklodowska Curie: discovery of radium and polonium in the tailings of the uranium colour production in Joachimsthal

http://creativecommons.org/licenses/by-sa/3.0/
right: Geomartin on wikipedia.de
Carl Auer von Welsbach

• inventor of the incandescent light mantle
 – also called the ‘Welsbach mantle’
Standardised Screening Procedure for potentially contaminated sites

- Dose rate/contamination monitor measurements to locate hotspots (on-site)
- Soil samples/wipe tests (on-site)
- Sample Analysis:
 1. Gamma spectroscopy
 2. Radiochemical analysis using LSC and ICP-MS → lower LLD (lower limit of detection) than gamma spectroscopy → classification of radiological waste
- Determination of a nuclide vector for the site
- Prediction of an exposure scenario
Analysis of Soil Samples

• Radium + daughters Pb-210 and Po-210

• Established method: determination of Ra-226+228 and Pb/Po-210 in water
 → no digestion necessary

• New matrix: soil

• SAMPLES: ~1 g, soil sample, air dried, B1-B5
Empirical approach

• Compare different digestion methods:
 - Microwave digestion
 - Hotplate digestion in a beaker

• Check impact of ashing

• Compare use of different acids for digestion:
 - Standard: HNO₃
 - Sequential digestion: HCl and Aqua Regia

→ are the radionuclides extracted with these acids negligible after prior digestion with HNO₃?
Experimental

Soil Sample → (Ashing) → Microwave → Hotplate → Sequential Acid Digestion

1. HNO₃ + H₂O₂
2. HCl
3. Aqua Regia

ICP-MS measurement
U-238

Radiochemical Analysis
Ra-226 + Ra-228
Pb-210 + Po-210
Radiochemical Procedure:
Po-210, Pb-210, Ra-226, Ra-228

Precipitation
(Na₂S)

- Supernatant ➔ Ra-226/228
- Precipitate ➔ Pb/ Po-210
 - Precipitate washed with 1% HNO₃ ➔ U-238

Co-precipitation
(Ba + H₂SO₄)

- Dissolution in H₃PO₄
 - ICP-MS measurement

Dissolution in EDTA

- Extraction of Bi and Po with POLEX cocktail

LSC measurement
Filtrate after Na$_2$S precipitation (Radium fraction)

(1) HNO$_3$ (2) HCl (3) Aqua regia

(Fractions resulting from sequential digestion)
Preliminary Results: chemical yield

Determined through ICP-MS measurement

Carriers: Pb-208, Ba-137/138
Preliminary Results:
HNO$_3$ (1st) fraction

HPGe: 48 ± 18 Bq/kg
Preliminary Results:
HNO₃ (1st) fraction

HPGe:
53 ± 3 Bq/kg (Ac-228)
Preliminary Results:
HNO₃ (1st) fraction

HPGe: 78 ± 27 Bq/kg
Preliminary Results: HNO₃ (1st) fraction

- Po-210:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Activity Concentr. [Bq/ kg]</th>
<th>Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>37.9</td>
<td>16</td>
</tr>
<tr>
<td>B2</td>
<td>29.3</td>
<td>17</td>
</tr>
<tr>
<td>B3</td>
<td>37.2</td>
<td>16</td>
</tr>
<tr>
<td>B4</td>
<td>21.2</td>
<td>19</td>
</tr>
<tr>
<td>B5</td>
<td>31.1</td>
<td>19</td>
</tr>
</tbody>
</table>
Preliminary Results: HCl (2nd) fraction

Activity concentration [Bq/kg]

<table>
<thead>
<tr>
<th></th>
<th>HNO₃+H₂O₂ (1)</th>
<th>HCl (2)</th>
<th>Aqua Regia (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238 (directly after digestion)</td>
<td>45 ± 5</td>
<td>5 ± 1</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>U-238 (1% HNO₃ solution)</td>
<td>45 ± 5</td>
<td>5 ± 1</td>
<td>1 ± 1</td>
</tr>
</tbody>
</table>
Preliminary Results:
U-238 (ICP-MS)

Activity concentration [Bq/kg]

- HNO₃+H₂O₂ (1)
- HCl (2)
- Aqua Regia (3)

Sample No (pre-treatment) B4 (hotplate, ashing) B5 (hotplate, no ashing)
Preliminary Results:
Aqua Regia (3rd) fraction

• All measurements below LLD
• **Chemical Yield:**
 - Needs to be improved and stabilised for Ra-226 and Ra-228

• **HNO₃ digestion:** sufficient for determination of Ra-226/228, Pb-210 and Po-210
 → no digestion with HCl/Aqua regia needed

• **HCl digestion:** option for uranium determination
Summary + Conclusions

• Wet digestion with **hotplate** gave us better results than microwave digestion – also: bigger sample mass possible

• **Po-210 measurement:** precipitate containing Pb/Po needs to be washed with 1% HNO3 multiple times to remove uranium
Next Steps

• Stabilise and improve chemical yield

• Achieve better LLD through use of higher sample mass

• Test method using samples with higher activities and reference materials
Acknowledgements

• BMLFUW – Austrian Federal Ministry for Agriculture, Forestry, Environment and Water Management

Questions?