

Revisiting Protactinium Chemistry for a Range of New Measurements

Peter Ivanov, María García-Miranda, Cyrus Larijani and Simon Jerome

RRMC 2015, Sheraton Hotel, Iowa City 30th October 2015

- Background
- Uses and reasons to do the work
- Standardisation work

- Column separations
- Summary and conclusions

- Background
- Uses and reasons to do the work
- Standardisation work

Column separations

Summary and conclusions

Protactinium

- One of the rarer elements...
 - Discovered in 1913
 - Element 91
 - Occurs with uranium

Concentration: $\sim 330 \text{ ng/g uranium}$ Mass ratio 231 Pa: 226 Ra: $0.961 \pm 0.018 (k=2)$

- Naturally occurring isotopes
 - Protactinium-231:
 - Protactinium-234m:
 - Protactinium-234: Branching ratio

 $t_{\frac{1}{2}} = 32670 (\pm 260) y$

- $t_{\frac{1}{2}} = 1.159 (\pm 0.011) m$
- $t_{\frac{1}{2}} = 6.70 (\pm 0.5) h$ 0.15 (± 0.01)

576 Bq/g U 12350 Bq/g U 18 Bq/g U

- Neptunium (4n+1) series
 - Protactinium-233: $t_{1/2} = 26.98 (\pm 0.02) d$

Protactinium

- Has a complicated chemistry
 - Analogous to niobium and tantalum
 - Chemistry dominated by chloro- or fluoro- complexes
 - Hydrolyses and precipitates easily
 - Behaviour exacerbated at trace (<10⁻⁸ M) levels
 - Solubilised by oxalate, citrate and tartrate
 - Also exhibits 4+ oxidation state
 - Most knowledge from UKAEA work in 1950s and 1960s

~125 g (~220 GBq) recovered from uranium waste in UK nuclear programme

Was considered as a fuel for nuclear weapons
 Fast neutron cross section supposedly similar to ²³⁹Pu at neutron energies >1 MeV

- Background
- Uses and reasons to do the work
- Standardisation work

Column separations

Summary and conclusions

Forensics and sedimentation

- Protactinium-231
 - Long half-life means it is suitable for dating

Ingrowth of ²³¹Pa into ²³⁵U

Uranium measurement by γspectrometry

• 20 most abundant photon emissions for 234 Th \rightarrow^{234m} Pa \rightarrow^{234} Pa

Nuclide	Energy (keV)	Emission prob. (%)	± Emission prob. (%)	Relative uncertainty
²³⁴ Th	63.3	3.75	0.08	2.13%
²³⁴ Th	83.3	0.061	0.005	8.20%
²³⁴ Th	92.4	2.18	0.19	8.72%
²³⁴ Th	92.8	2.15	0.19	8.84%
^{234m} Pa	94.7	0.1973	0.0025	1.27%
²³⁴ Th	95.9	0.021	0.013	61.9%
^{234m} Pa	98.4	0.316	0.004	1.27%
²³⁴ Pa	98.4	0.0252	0.0022	8.55%
^{234m} Pa	111.2	0.115	0.002	1.74%
²³⁴ Th	112.8	0.215	0.022	10.2%
^{234m} Pa	114.9	0.0382	0.0005	1.31%
²³⁴ Pa	131.3	0.0273	0.0019	6.72%
^{234m} Pa	258.2	0.0738	0.0008	1.08%
^{234m} Pa	742.8	0.094	0.003	3.19%
^{234m} Pa	766.4	0.323	0.004	1.24%
^{234m} Pa	786.3	0.0536	0.0007	1.31%
²³⁴ Pa	946	0.0203	0.0027	13.0%
^{234m} Pa	1001	0.847	0.008	0.94%
^{234m} Pa	1737.8	0.0214	0.0003	1.40%
^{234m} Pa	1831.4	0.01759	0.00023	1.31%

Thorium fuel cycle

Alternative fuel cycle Protactinium-233 - Abundance of Thorium-233 decays Protactinium-233 decays quickly to slowly over a month to thorium is at least protactinium-233 uranium-233, an ideal fuel 4 times that of uranium Uranium-233 Proceeds via ²³³Pa 232 Th(*n*, γ)²³³Th(β)²³ Thorium-233 Uranium-233 fissions, $^{3}Pa(\beta)^{233}U$ releasing energy and neutrons to continue the process Important for Natural thorium absorbs a neutron worker protection It is impossible to from fission and release the energy of becomes Th-233 thorium all at once. Thorium-232

- Background
- Uses and reasons to do the work
- Standardisation work

Column separations

Summary and conclusions

Work to be done

- Protactinium-231
 - Produce with defined separation date from daughter nuclides
 - Calibrate by defined solid angle measurements
 - Mass spectrometry for mass measurement
- Protactinium-234m/234
 - Separate 5-10 MBq ²³⁴Th from 500-1000g ²³⁸U
 - Standardise by $4\pi \beta$ - γ coincidence counting
 - Determine emission probabilities
 - Separate ^{234m}Pa and ²³⁴Pa and observe ingrowth
 - Then repeat to measure 234m Pa $\rightarrow {}^{234}$ Pa branching ratio
 - Iterate calculations to reduce uncertainties and corrections
- Protactinium-233
 - None required

Chemistry required

- Protactinium-231
 - Separation of ²³¹Pa from ²²⁷Ac, ²²⁷Th and ²²³Ra

Ingrowth into separated ²³¹Pa

More chemistry

- Protactinium-234
 - Expect to get \sim 7.5-15 kBq from 5000-10000 kBq ²³⁴Th
 - After processing, expect it to have decayed to 6-12 kBq ²³⁴Pa
 - Need <0.05% ²³⁴Th impurity, ie <3 Bq
 - Decontamination factor needs to be $>3 \times 10^6$
- Counting technique
 - Liquid scintillation-γ coincidence counting
 - Protactinium needs to be maintained in solution
- Protactinium-233
 - Employed as a tracer for this work
 - Separate from ²³⁷Np

Irradiation of ²³²Th is not possible (no UK reactors)

- Background
- Uses and reasons to do the work
- Standardisation work

- Column separations
- Summary and conclusions

Cation exchange with HCl

- Few indications in the literature what was possible
 - Strategy: Absorb neptunium on the resin
 - Use the anionic nature of protactinium in solution to separate

Column:AG50-X8(1g)Load solution:0.2 M HCl(10 mL)Pa wash solution:0.2 M HCl(10 mL)^{233}Pa washes through the resin237Np is retained(10 mL)^{237}Np is retained.2 M HCl/1 M HF(10 mL)^{237}Np is removed.2 M HCl/1 M HF(10 mL)

- Results
 - Protactinium-233 yield: 89%
 - Neptunium-237 yield: ~36%

Cation exchange with HNO₃

- Few indications in the literature what was possible
 - Strategy: Absorb neptunium on the resin
 - Use the anionic nature of protactinium in solution to separate

Column:AG50-X8(1g)Load solution: 1 M HNO_3 (10 mL)Pa wash solution: 1 M HNO_3 (10 mL) 233 Pa washes through the resin237 Np is retained(10 mL) 237 Np is retained $1 \text{ M HNO}_3/1 \text{ M NH}_4$ F(10 mL) 237 Np is removed $1 \text{ M HNO}_3/1 \text{ M NH}_4$ F(10 mL)

- Results
 - Protactinium-233 yield: 83%
 - Neptunium-237 yield: ~9%

TEVA with HCl

- Published data suggests that Pa is bound weakly by HCl on TEVA
 - To separate

Column: TEVA Load solution: 2 M HCl Pa wash solution: 2 M HCl ²³³Pa washes through the resin ²³⁷Np is retained Np wash solution: 0.1 M HCl ²³⁷Np is removed

- Results
 - Protactinium-233 yield: 83%
 - Neptunium-237 yield: $\sim 11\%$

TEVA with HNO₃

 Published data suggests that Pa is bound strongly by HNO₃ on TEVA

(1g)

(10 mL)

(10 mL)

- To separate

Column:TEVALoad solution: 8 M HNO_3 Pa wash solution: 8 M HNO_3 233 Pa washes through the resin 237 Np is retainedNp wash solution: 1 M HNO_3 237 Np is removed

Results

- Protactinium-233 yield: ~100%
- Neptunium-237 yield: ~30
 (in Pa fraction)

UTEVA with HCl

U/TEVA

Published data suggests that Pa is bound strongly by HCl on UTEVA with strong acid

To separate

Column: UTEVA Load solution: 9 M HCl Th wash solution: 4.5 M HCl ²²⁹Th washes through the resin Pa wash solution: 4.5 M HCl/0.1 M HF ²³³Pa washes through the resin U wash solution: 0.1 M HCl ²³²U is removed

Results

- Protactinium-233 yield: ~40%
- Thorium-229 yield: ~80%
- Uranium-232 yield: ~80%

(1g)

- Background
- Uses and reasons to do the work
- Standardisation work

Column separations

Summary and conclusions

Summary

Resin	Eluant	Pa	Np	U	Th	Comments
AG50	HCl	89%	Nil	Nil	Nil	Pa in good yield, separation from Np is effective
	HNO ₃	83%	Nil	n/a	n/a	Pa in good yield, separation from Np is effective
TEVA	HCl	83%	~30%	Nil	Nil	Pa in good yield, separation from Np is not very effective
	HNO ₃	~100%	~30%	n/a	n/a	Pa in good yield, separation from Np is not very effective
TBP	HCl	~39%	Nil	n/a	n/a	Pa in poor yield, separation from Th, U and Np is effective
UTEVA	HCl	40%	Nil	Nil	Nil	Pa in poor yield, separation from Th, U and Np is effective

Conclusions

Variety of separation media tested

- AG50 cation resin
 - Surprisingly, seems to work well with good separation from Th, U and Np in HCl (HNO₃ only tested for Np).
 - Ac to be tested, but predicted to be strongly adsorbed
- TEVA
 - Yield of Pa is good, contaminated by Np, but separation from Th and U is good.
 - Ac to be tested, but predicted to be present in Pa fraction
- TBP resin
 - Yield of Pa is poor, but not contaminated by Np (data for Th and Uto be measured).
 - Ac to be tested, but predicted to be present in Pa fraction
- UTEVA
 - Yield of Pa is poor, but separation from Th, U and Np is good. Ac to be tested, but predicted to be present in Pa fraction

Conclusions

Choices at this point

- AG50 cation resin

- Seems to offer the best opportunity for generating clean protactinium Thorium and uranium untested in HNO₃
- Actinium and radium also untested but should be strongly retained on the resin
- Chemical issues
 - It is known that tracer levels of protactinium behave poorly and this was observed in some of this work
 - Addition of NH_4F (instead of HF) is not recommended K_2PaF_7 is insoluble, and this is probably true for $(NH_4)_2PaF_7$
- Solvent extraction work is not complete

Work to be done

- Separations
 - Extend to gaps mainly actinium and radium
- Solvent extraction
 - Will test 2,4-dimethyl-pentan-3-ol and 2,4-dimethyl-pentan-3-one
- Chemical behaviour
 - Using cerium as an analogue for thorium (in another project) was successful
 - Trying tantalum as an analogue for protactinium ${\sim}20~\mu g/mL$ or ${\sim}10^{-4}~M$
- Standardisations
 - 2016 expected for ²³⁴Pa
 - 2016/17 expected for ²³¹Pa BIPM supplementary comparison
 - 2017/18 expected for ²³⁴Th/^{234m}Pa BIPM supplementary comparison

Thank you. Any questions?

National Measurement System

The National Measurement System delivers world-class measurement science & technology through these organisations

The National Measurement System is the UK's national infrastructure of measurement laboratories, which deliver world-class measurement science and technology through four National Measurement Institutes (NMIs): LGC, NPL, the National Physical laboratory, TUV NEL the former National Engineering Laboratory, and the National Measurement Office (NMO).